Capacitors in Parallel

Capacitors are said to be connected together "in parallel" when both of their terminals are respectively connected to each terminal of the other capacitor or capacitors. The voltage (Vc) connected across all the capacitors that are connected in parallel is THE SAME. Then, Capacitors in Parallel have a "common voltage" supply across them giving

VC1 = VC2 = VC3 = VAB = 12V

In the following circuit the capacitors, C1C2 and C3 are all connected together in a parallel branch between points A and B as shown. When capacitors are connected together in parallel the total or equivalent capacitance, CT in the circuit is equal to the sum of all the individual capacitors added together. The currents flowing through each capacitor and as we saw in the previous tutorial are related to the voltage. Then by applying Kirchoff's Current Law, (KCL) to the above circuit, we have and this can be re-written as: Then we can define the total or equivalent circuit capacitance, CT as being the sum of all the individual capacitances add together giving us the generalized equation of

Definition provided by Electronic tutorials

Capacitors in Parallel

Example Problem 