Density 

 Big Idea

  • Density is the ratio of the mass of an object to its volume.
  • Gases are less dense that either solids or liquids
  • Both liquid and solid materials can have a variety of densities
  • For liquids and gases, the temperature will affect the density to some extent.

 Density

A golf ball and a table tennis ball are about the same size. However, the golf ball is much heavier than the table tennis ball. Now imagine a similar size ball made out of lead. That would be very heavy indeed! What are we comparing? By comparing the mass of an object relative to its size, we are studying a property called density. Density is the ratio of the mass of an object to its volume.

\text{Density} = \frac{\text{mass}}{\text{volume}}

Density is an intensive property, meaning that it does not depend on the amount of material present in the sample. Water has a density of 1.0 g/mL. That density is the same whether you have a small glass of water or a swimming pool full of water. Density is a property that is constant for the particular identity of the matter being studied.

The SI units of density are kilograms per cubic meter (kg/m3), since the kg and the m are the SI units for mass and length respectively. In everyday usage in a laboratory, this unit is awkwardly large. Most solids and liquids have densities that are conveniently expressed in grams per cubic centimeter (g/cm3). Since a cubic centimeter is equal to a milliliter, density units can also be expressed as g/mL. Gases are much less dense than solids and liquids, so their densities are often reported in g/L.