Nuclear Fission 

 Nuclear fission is a nuclear reaction in which the nucleus of an atom splits into smaller parts (lighter nuclei), often producing free neutrons and photons as well. Fission of heavy elements is an exothermic reaction which can release large amounts of energy both as electromagnetic radiation and as kinetic energy of the fragments (heating the bulk material where fission takes place). For fission to produce energy, the total binding energy of the resulting elements has to be higher than that of the starting element.

Definition Provided by Wikipedia 

Chain Reaction 

 nuclear chain reaction occurs when one nuclear reaction causes an average of one or more nuclear reactions, thus leading to a self-propagating number of these reactions. The specific nuclear reaction may be the fission of heavy isotopes (e.g. 235U) or the fusion of light isotopes (e.g. 2H and 3H).

Definition Provided by Wikipedia 

Critical Mass 

 critical mass is the smallest amount of fissile material needed for a sustained nuclear chain reaction.

Nuclear Fusion 

 Nuclear fusion is the process by which two or more atomic nuclei join together, or "fuse", to form a single heavier nucleus. This is usually accompanied by the release or absorption of large quantities of energy. Large-scale thermonuclear fusion processes, involving many nuclei fusing at once, must occur in matter at very high densities and temperatures (like in stars going nova).

The fusion of two nuclei with lower masses than iron (which, along with nickel, has the largest binding energy per nucleon) generally releases energy while the fusion of nuclei heavier than iron absorbs energy. The opposite is true for the reverse process, nuclear fission.

Definition Provided by Wikipedia 

Control Rods 

 control rod is a rod made of chemical elements capable of absorbing many neutrons without fissioning themselves. They are used in nuclear reactors to control the rate of fission of uranium and plutonium. 

Definition Provided by Wikipedia 

How does a Nuclear Power Plant work 

 To turn nuclear fission into electrical energy, the first step for nuclear power plant operators is to be able to control the energy given off by the enriched uranium and allow it to heat water into steam.

Enriched uranium is typically formed into inch-long (2.5-cm-long) pellets, each with approximately the same diameter as a dime. Next the pellets are arranged into long rods, and the rods are collected together into bundles. The bundles are submerged in water inside a pressure vessel. The water acts as a coolant. For the reactor to work, the submerged bundles must be slightly supercritical. Left to its own devices, the uranium would eventually overheat and melt.

To prevent overheating, control rods made of a material that absorbs neutrons are inserted into the uranium bundle using a mechanism that can raise or lower the control rods. Raising and lowering the control rods allow operators to control the rate of the nuclear reaction. When an operator wants the uranium core to produce more heat, the control rods are raised out of the uranium bundle (thus absorbing fewer neutrons). To create less heat, they are lowered into the uranium bundle. The rods can also be lowered completely into the uranium bundle to shut the reactor down in the case of an accident or to change the fuel.

The uranium bundle acts as an extremely high-energy source of heat. It heats the water and turns it to steam. The steam drives a turbine, which spins a generator to produce power.

Text and Diagram provided by How Stuff Works